
Page 14 FoxRockX July 2014

Summarizing aggregated
data, Part 1
SQL Server’s ROLLUP clause lets you put totals, averages and more from subsets of your
computed dta right into the same cursor.

Tamar E. Granor, Ph.D.

This series of articles looks at features of SQL Server
that make some tasks easier than they are with
VFP’s SQL sublanguage. Over the next two issues,
we explore ways to provide summary results for
all data and larger subgroups of your data as part
of query results. In this issue, we look at ROLLUP.
SQL SELECT’s GROUP BY clause makes it easy to
aggregate data in a query. Just include the fields
that specify the groups and some fields using the
aggregate functions (COUNT, SUM, AVG, MIN,
MAX in VFP; SQL Server has a few more).

For example, the query in Listing 1 (TotalsBy-
CountryCity.PRG in this month’s downloads) fills
a cursor with sales for each city for each month;
Figure 1 shows partial results.

Listing 1. This query computes total sales for each combina-
tion of country, city, year and month.
SELECT Country, ;
 City, ;
 YEAR(OrderDate) AS OrderYear, ;
 MONTH(OrderDate) AS OrderMonth, ;
 SUM(Quantity * OrderDetails.UnitPrice);
 AS nTotal ;
 AVG(Quantity * OrderDetails.UnitPrice);
 AS nAvg, ;
 COUNT(*) AS nCount ;
 FROM Customers ;
 JOIN Orders ;
 ON Customers.CustomerID = ;
 Orders.CustomerID ;

 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 GROUP BY OrderYear, OrderMonth, ;
 Country, City ;
 ORDER BY Country, City, ;
 OrderYear, OrderMonth ;
 INTO CURSOR csrCtyTotals

You can do an analogous query using the SQL
Server AdventureWorks 2008 database, though it
involves a lot more tables because the Adventure-
Works database covers a wider range of data than
just sales. Listing 2 (SalesByCountryCity.SQL in
this month’s downloads) shows the analogous SQL
Server query.

Listing 2. Aggregating the data with SQL Server’s Adventure-
Works 2008 database is more verbose, but contains the same
elements.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales
 AVG(SubTotal) AS AvgSale,
 COUNT(*) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID

Figure 1. The query in Listing 1 computes the total sales for each city in each month.

July 2014 FoxRockX Page 15

JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate))

The rules for grouping are pretty simple. The
field list contains two types of fields, those to group
on, and those that are being aggregated. In the
VFP example, the fields to group on are Country,
City, OrderYear and OrderMonth, and the aggre-
gated fields are nTotal, nAvg and nCount. The SQL
Server query has the same list, but the field names
are different. (Before VFP 8, you could include
fields in the list that were neither grouped on nor
aggregated, but doing so could give you mislead-
ing results. This article on my website explains the
problem in detail: http://tinyurl.com/leydyqw.)

Computing group totals
What the basic query doesn’t give you, though, is
aggregation (that is, summaries) at any level except
the one you specify. That is, while you get the total,
average and count for a specific city in a specific
month, you don’t get them for that city for the

whole year, or for that month for a whole country,
and so on. Figure 2 shows what we’re looking for.
At the end of each year, a new record shows the
total, average and count for that year. At the end
of each city, another record shows the city’s total,
average and count and at the end of each country,
yet another record has country-wide results.

In VFP, there are three ways to get that data.
One is to create a report and use totals and report
variables to compute and report that data, but of
course, then you only have the data as output, not
in a VFP cursor.

The second choice is to use Xbase code to
compute them based on the initial cursor. Listing
3 (WithGroupTotalsXbase.PRG in this month’s
downloads) shows how to do this; it assumes
you’ve already run the query in Listing 1. It keeps
running totals and counts for each level: year,
city, country and overall. Then, when one of those
changes, it inserts the appropriate record.

Listing 3. You can add subgroup aggregates by looping
through the cursor.
LOCAL nYearTotal, nCityTotal, ;
 nCountryTotal, nGrandTotal
LOCAL nYearCnt, nCityCnt, ;
 nCountryCount, nGrandCount
LOCAL nCurYear, cCurCity, cCurCountry

* Create a new cursor to hold the results
SELECT * ;
 FROM csrCtyTotals ;
 WHERE .F. ;
 INTO CURSOR csrWithGroupTotals READWRITE

SELECT csrCtyTotals
STORE 0 TO nYearTotal, nCityTotal, ;

Figure 2. It can be useful to have group totals in the same cursor as the original data.

Page 16 FoxRockX July 2014

 nCountryTotal, nGrandTotal
STORE 0 TO nYearCount, nCityCount, ;
 nCountryCount, nGrandCount
nCurYear = csrCtyTotals.OrderYear
cCurCity = csrCtyTotals.City
cCurCountry = csrCtyTotals.Country

SCAN
 * First check for end of year,
 * but could be same year and change of city
 * or country.
 IF csrCtyTotals.OrderYear <> m.nCurYear OR ;
 NOT (csrCtyTotals.City == m.cCurCity) OR;
 NOT (csrCtyTotals.Country == ;
 m.cCurCountry)
 INSERT INTO csrWithGroupTotals ;
 VALUES (m.cCurCountry, m.cCurCity, ;
 m.nCurYear, .null., ;
 m.nYearTotal, ;
 m.nYearTotal/m.nYearCount, ;
 m.nYearCount)
 m.nCurYear = csrCtyTotals.OrderYear
 STORE 0 TO m.nYearTotal, m.nYearCount

 * Now check for change of city
 IF NOT (csrCtyTotals.City == m.cCurCity) ;
 OR ;
 NOT (csrCtyTotals.Country == ;
 m.cCurCountry)
 INSERT INTO csrWithGroupTotals ;
 VALUES (m.cCurCountry, ;
 m.cCurCity, ;
 .null., .null., ;
 m.nCityTotal, ;
 m.nCityTotal/m.nCityCount, ;
 m.nCityCount)
 m.cCurCity = csrCtyTotals.City
 STORE 0 TO m.nCityTotal, ;
 m.nCityCount

 * Now check for change of country
 IF NOT (csrCtyTotals.Country == ;
 m.cCurCountry)
 INSERT INTO csrWithGroupTotals ;
 VALUES (m.cCurCountry, .null., ‚
 .null., .null., ;
 m.nCountryTotal, ;
 m.nCountryTotal/m.nCountryCount, ;
 m.nCountryCount)
 m.cCurCountry = ;
 csrCtyTotals.Country
 STORE 0 TO m.nCountryTotal, ;
 m.CountryCount
 ENDIF
 ENDIF
 ENDIF

 * Now handle current record
 INSERT INTO csrWithGroupTotals ;
 VALUES (csrCtyTotals.Country, ;
 csrCtyTotals.City, ;
 csrCtyTotals.OrderYear, ;
 csrCtyTotals.OrderMonth, ;
 csrCtyTotals.nTotal, ;
 csrCtyTotals.nAvg, ;
 csrCtyTotals.nCount)
 nYearTotal = m.nYearTotal + ;
 csrCtyTotals.nTotal
 nYearCount = m.nYearCount + ;
 csrCtyTotals.nCount
 nCityTotal = m.nCityTotal + ;
 csrCtyTotals.nTotal
 nCityCount = m.nCityCount + ;
 csrCtyTotals.nCount
 nCountryTotal = m.nCountryTotal + ;

 csrCtyTotals.nTotal
 nCountryCount = m.nCountryCount + ;
 csrCtyTotals.nCount
 nGrandTotal = m.nGrandTotal + ;
 csrCtyTotals.nTotal
 nGrandCount = m.nGrandCount + ;
 csrCtyTotals.nCount

ENDSCAN

* Now insert grand totals
INSERT INTO csrWithGroupTotals ;
 VALUES (.null., .null., .null., .null., ;
 m.nGrandTotal, ;
 m.nGrandTotal/m.nGrandCount, ;
 m.nGrandCount)

The third choice is to do a series of queries,
each grouping on different levels and then consoli-
date the results. Listing 4 shows this version of the
code; as in the previous example, it assumes you’ve
already run the query that creates csrCtyTotals.
This code creates a cursor with each city’s annual
totals, one with each city’s overall totals, one with
each country’s overall totals, and one containing
the grand total. Then it uses UNION to combine all
the results into a single cursor. It’s included in this
month’s downloads as WithGroupTotalsSQL.PRG.

Listing 4. You can add the yearly, city-wide and country-wide
totals using SQL, as well.
* Now year totals by city
SELECT Country, City, OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 GROUP BY Country, City, OrderYear ;
 INTO CURSOR csrYearTotals

* Now city totals by year
SELECT Country, City, ;
 99999 AS OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 GROUP BY Country, City ;
 INTO CURSOR csrCityTotals

* Now year totals
SELECT Country, ;
 REPLICATE('Z', 15) AS City, ;
 99999 AS OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;
 FROM csrCtyTotals ;
 GROUP BY Country ;
 INTO CURSOR csrCountryTotals

* Now grand total
SELECT REPLICATE('Z', 15) AS Country, ;
 REPLICATE('Z', 15) AS City, ;
 99999 AS OrderYear, ;
 999 as OrderMonth, ;
 SUM(nTotal) AS nTotal, ;
 SUM(nTotal)/SUM(nCount) AS nAvg, ;
 SUM(nCount) AS nCount ;

July 2014 FoxRockX Page 17

 FROM csrCtyTotals ;
 INTO CURSOR csrGrandTotal

* Create one cursor
SELECT * ;
 FROM csrCtyTotals ;
UNION ALL ;
SELECT * ;
 FROM csrYearTotals ;
UNION ALL ;
SELECT * ;
 FROM csrCityTotals ;
UNION ALL ;
SELECT * ;
 FROM csrCountryTotals ;
UNION ALL ;
SELECT * ;
 FROM csrGrandTotal ;
 ORDER BY Country, City, ;
 OrderYear, OrderMonth ;
 INTO CURSOR csrWithGroupTotals READWRITE

UPDATE csrWithGroupTotals ;
 SET OrderMonth = .null. ;
 WHERE OrderMonth = 999

UPDATE csrWithGroupTotals ;
 SET OrderYear = .null. ;
 WHERE OrderYear = 99999

UPDATE csrWithGroupTotals ;
 SET City = .null. ;
 WHERE City = REPLICATE('Z', 15)

UPDATE csrWithGroupTotals ;
 SET Country = .null. ;
 WHERE Country = REPLICATE('Z',
15)

There’s one trick in this code. If
we put null into the fields that are
irrelevant for a given total, when
we sort the result, the totals appear
above rather than below the records
they represent. Instead, we put an
impossible value that sorts to the
bottom initially, then change it to
null after ordering the data.

Introducing ROLLUP
Of course, the reason for showing all
this code is that SQL Server makes it
much easier. The ROLLUP clause lets you compute
these summaries as part of the original query.

ROLLUP appears in the GROUP BY clause,
looking like a function around the fields you want
to apply it to. Listing 5 shows the SQL Server equiv-
alent of Listing 3 and Listing 4; the code is included
in this month’s downloads as SalesByCountryCity-
Rollup.SQL. Figure 3 shows partial results.

Listing 5. SQL Server’s ROLLUP clause computes the sub-
group aggregates as part of the query.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,

 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY ROLLUP(CountryRegion.Name,
 Address.City,
 YEAR(OrderDate),
 MONTH(OrderDate))

The order of the fields in the ROLLUP clause
matters. The last one listed is summarized first.
In Figure 3, you can see that the first level of sum-
mary is the whole year for a given city and coun-
try, because the month column is listed last. If you
change the order in the ROLLUP clause to put the
city last, as in Listing 6, the first summary level is a
single month (and year), across all cities in a coun-
try; Figure 4 shows partial results.

Listing 6. The order of the fields in the ROLLUP clause mat-
ters. Changing the order changes what summaries you get.
GROUP BY ROLLUP(CountryRegion.Name,
 YEAR(OrderDate),
 MONTH(OrderDate),
 Address.City)

Figure 3. In SQL Server, it’s easy to compute aggregates for subgroups.

Page 18 FoxRockX July 2014

The ROLLUP clause doesn’t have to surround
all the fields in the GROUP BY, only the ones for
which you want summaries. So, if you don’t need
a grand total in the previous example, you can put
CountryRegion.Name before the ROLLUP clause,
as in Listing 7. Similarly, if you want summaries
only for each city and year, put both CountryRe-
gion.Name and Address.City before the ROLLUP
clause. You can also put fields after the ROLLUP
clause, but in my testing, the results aren’t terribly
useful.

Listing 7. Not all fields have to be included in ROLLUP, just
those that should be summarized. With this GROUP BY clause,
the results won’t include grand totals because we’re not rolling
up the country.
GROUP BY CountryRegion.Name,
 ROLLUP(Address.City,
 YEAR(OrderDate),
 MONTH(OrderDate))

ROLLUP with cross-
products
You can use two ROLLUP clauses
in the same GROUP BY. Doing so
gives you the cross-product of
the two groups. That is, you get
the results you’d get from either
ROLLUP, but you also get combi-
nations of the two.

For example, if you change
the GROUP BY clause in Listing 5
to the one shown in Listing 8, you
get all the rows you had before,
but you also get summaries for
each country for each month and
year, as well as overall summa-
ries for each month and for each
year. Figure 5 shows part of the
results. The complete query is
included in this month’s down-

loads as SalesByCountryCityRollupXProd.SQL.

Listing 8. You can use two ROLLUP clauses to generate the
cross-product of the two sets of fields.
GROUP BY ROLLUP(YEAR(OrderDate),
 MONTH(OrderDate)),
 ROLLUP(CountryRegion.Name,
 Address.City)

As with a single ROLLUP clause, the order in
which you list the ROLLUP clauses and the order
of the fields within them determines both what
summaries you get and the order of the records in
the result (if you don’t use an ORDER BY clause).

Adding descriptions to
summaries
In all the examples so far, the null value indicates
which field is being summarized. But you can put
descriptive data in those fields instead.

Wrap the columns being
rolled up with ISNULL() and
specify the string you want
in the summary rows as the
alternate. (ISNULL() in SQL
Server behaves like VFP’s
NVL() function, returning the
first parameter unless it’s null,
in which case it returns the
second parameter.) Listing 9
(SalesByCountryCityRollup-
WDesc.SQL in this month’s
downloads) shows the same
query as Listing 5, except that
each of the non-aggregated
fields includes a description
to use when it’s summarized.
Doing so requires changing Figure 5. Using the GROUP BY clause in Listing 8 with the earlier query provides summaries for

not just each city by year, each city overall, and each country, but also for each country by month
and by year, and for each month and each year.

Figure 4. When you change the order of fields in the ROLLUP clause, you get a different
set of summaries.

July 2014 FoxRockX Page 19

the year and month columns to character, of course.
Figure 6 shows a chunk of the results.

Listing 9. Rather than having null indicate a summary row, use
the description you want.
SELECT ISNULL(Person.CountryRegion.Name,
 'All countries') AS Country,
 ISNULL(Person.Address.City,
 'All cities') AS City,
 ISNULL(STR(YEAR(OrderDate)),
 'All years') AS OrderYear,
 ISNULL(STR(MONTH(OrderDate)),
 'All months') AS OrderMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =

 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY ROLLUP(CountryRegion.Name,
 Address.City,
 YEAR(OrderDate),
 MONTH(OrderDate))

More to come
In my next article, I’ll look at additional ways to
summarize results in SQL Server using the CUBE
and GROUPING SETS clauses.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the

VFP Developer, available
at www.foxrockx.com. Her
other books are available
from Hentzenwerke Pub-
lishing (www.hentzenwerke.
com). Tamar was a Micro-
soft Support Most Valuable
Professional from the pro-
gram's inception in 1993
until 2011. She is one of the
organizers of the annual
Southwest Fox conference.
In 2007, Tamar received
the Visual FoxPro Commu-
nity Lifetime Achievement
Award. You can reach her at
tamar@thegranors.com
or through www.
tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor:
Rainer Becker-Hinrichs

Copyright © 2014 ISYS GmbH. This work is an independently produced
pub lication of ISYS GmbH, Kronberg, the content of which is the property
of ISYS GmbH or its affiliates or third-party licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written
permission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker-Hinrichs.

FoxRockX, FoxTalk 2.0, FoxTalk, Visual Extend and Silverswitch are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respective companies.

Figure 6. Including descriptions instead of null makes it easier to understand the summary lines.

